Trigonometry

Summary

Basics

sinθ=oppositehypotenusecosθ=adjacenthypotenusetanθ=oppositeadjacent=sinθcosθsin2θ+cos2θ=1

For non-right angled triangles

Law of Sines

sinαa=sinβb=sinγc

Law of Cosines

a2=b2+C22bccosα

Compound Angles

sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=cosαcosβ±sinαsinβtan(α±β)=tanα±tanβ1±tanαtanβ

Double Angles

sin2α=2sinαcosαcos2α=cos2αsin2α=2cos2θ1=12sin2θtan2α=2tanα1tan2α

R Formula

When there is an expression involving sum of sine and cosine terms:

asinθ±bcosθ=Rsin(θ±α)

Where a,b,R and α are +ve constants,

R=a2+b2α=tan1ba

Special Angles

Degrees 0 30 45 60 90
Radians 0 π6 π4 π3 π2
sinθ 0 12 12 32 1
cosθ 1 32 12 12 0
tanθ 0 13 1 3 undefined
cscθ undefined 2 2 23 1
secθ 1 23 2 2 undefined
cotθ undefined 3 1 13 0

Converting Radians and Degrees

Rad Degree

π rad=180
1 rad=180π

x rad=(x×180π)

Degree Rad

90=π2 rad
180=π rad
270=3π2 rad
360=2π rad

x=x×π180 rad

Others

Reciprocals

cscθ=1sinθsecθ=1cosθcotθ=1tanθ

Trigonometric Ratios

tanθ=sinθcosθ