Logarithms
Related notes: Exponents
Intro
Logs are used to find the power
Example:
Example
To logarithm:
Short form
For common logarithms
Requirements
For
- The base (
) must always be > 0 AND 1
Laws of Logarithms
Overview
| Name | Formula |
|---|---|
| Product | $$\log_{b}(xy)=\log_{b}{x}+\log_{b}{y}$$ |
| Quotient | $$\log_{b}\left( \frac{x}{y} \right)=\log_{b}x - \log_{b}y$$ |
| Power | $$\log_{b}(x^n)=n\log_{b}x$$ |
| Change of base | $$\log_{b}x=\frac{\log_{c}x}{\log_{c}b}$$ |
| Change of base - Alt Swap base |
$$\log_{b}x = \frac{1}{\log_{x}b}$$ |
| Change of base - Alt Combine base |
$$\log_{b}x \times \log_{c}b=\log_{c}x$$ |
| Zero | $$\log_{b}1 = 0$$ |
| Identity | $$\log_{b}b=1$$ |
| Equality | $$\log_{b}x=\log_{b}y \implies x=y$$ |
| Inverse | $$b^{\log_{b}x}=x\log_{b}b^x=x$$ |
| Reciprocal | $$\log_{b}{\left( \frac{1}{x} \right)}=-\log_{b}x$$ |
When calculator doesn't support setting the base
Product law
Power Law
Proof
Let