Logarithms

Related notes: Exponents

Intro

Logs are used to find the power
Example:
a=bc
logba=c

Example

103=1000
To logarithm:
3=log101000

Short form

For common logarithms

Requirements

For logba=c

Laws of Logarithms

Overview

Name Formula
Product $$\log_{b}(xy)=\log_{b}{x}+\log_{b}{y}$$
Quotient $$\log_{b}\left( \frac{x}{y} \right)=\log_{b}x - \log_{b}y$$
Power $$\log_{b}(x^n)=n\log_{b}x$$
Change of base $$\log_{b}x=\frac{\log_{c}x}{\log_{c}b}$$
Change of base - Alt
Swap base
$$\log_{b}x = \frac{1}{\log_{x}b}$$
Change of base - Alt
Combine base
$$\log_{b}x \times \log_{c}b=\log_{c}x$$
Zero $$\log_{b}1 = 0$$
Identity $$\log_{b}b=1$$
Equality $$\log_{b}x=\log_{b}y \implies x=y$$
Inverse $$b^{\log_{b}x}=x\log_{b}b^x=x$$
Reciprocal $$\log_{b}{\left( \frac{1}{x} \right)}=-\log_{b}x$$
When calculator doesn't support setting the base

logab=lgalgb

Product law

Power Law

logaxr=rlogax for any real number r