1E. Vector - Basics Explanation (2D)

Syntax

v=[xyz]

Alt notation

v=i+j+k

Info

Addition

Addition chains the vectors.
Example:

Subtraction

Example: - $\vec{v_{1}}-\vec{v_{2}}$= endpoint of $v_{2}$ to endpoint of $v_1$ - $\vec{RQ}=\vec{PQ}-\vec{PR}$

Another way to see it:

Dot product

Link: Interactive

Vector projection derivation

Link: Interactive

$\vec{PS}$ is a scalar on $\vec{PR}$, so $\vec{PS} = c\times\hat{PR}$ (constant $\times$ $\vec{PR}$ unit vector) So to find $c$ (which is $\|\vec{PS}\|$), cosθ=PSPQPS=PQcosθSubstitutecosθ with dot product equation(cosθ=ab|ab)PS=PQ(PSPQPSPQ)PS=PSPQPSPS=PQPS^So, PS=(PQPS^)PS^